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CENTERS OF SYMMETRY IN FINITE 
INTERSECTIONS OF BALLS IN 

BANACH SPACES 

BY 

,ASVALD LIMA AND ULF UTTERSRUD 

ABSTRACT 

It is proved that a real Banach space X is a G-space (C~-space) if and only if the 
non-empty intersection of three balls with equal radii (any three balls) has a 
center of symmetry. 

Introduction 

Intersection properties of balls play an important role in the study of the 

isometric theory of Banach spaces. In the present paper we shall look at 

intersection properties of balls from a new point of view. Now we shall pay 

attention to the symmetry properties of the intersection of a family of balls. 

A set S is called centrally symmetric if S has a center of symmetry. The 

intersection of two balls B(x, r) and B(y, r) with equal radii has a center, the 

center is t(x + y ) .  But if we have three bails with equal radii then their 

intersection need not have a center. Take for example circular disks in R 2. On 

the other  side the non-empty intersection of three equal squares in R 2 always has 

a center. In fact it turns out that in the isometric sense the squares are the only 
balls in R 2 with this property. 

In w a Banach space is defined to have the SYM(n)-property (E.SYM(n)- 

property) if the non-empty intersection of n balls with equal radii (any n balls) 

has a center. We show that a Co-space has the E.SYM(n)-property for all n, and 

that ! 3 have neither the SYM(3)-property nor the E.SYM(2)-property. 

w contains the main result. We prove that a real Banach space X has the 

SYM(3)-property if and only if X is a G-space. This result is a sharpened version 

of a conjecture of Effros [2]. The proof is given as a sequence of lemmas. The 

principle of local reflexivity [9] plays an important role in our proof. We use it to 
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prove that if X has the SYM(n)-property (the E.SYM(n)-property)  then X** 

has the SYM(n)-property (the E.SYM(n)-property).  Lima [4] has characterized 

spaces without the 3.2.I.P., and spaces with the 3.2.I.P. but without the 4.2.I.P. 

We use these characterizations to prove that if X has the SYM(3)-property then 

X has the 4.2.I.P. Hence X** is a C(K)-space and we use this in the final step to 

prove that X is a G-space. As corollaries we get a new characterization of 

C(K)-spaces and the known fact that the range of a norm-1 projection in a 

G-space is a G-space. 

In w we examine the E.SYM(2)-property. The intersection of two circular 

disks in R 2 with different radii need not have a center, but the non-empty 

intersection of any two squares always has. In fact we have: If dim X = n < 

then X has the E.SYM(2)-property if and only if X is isometric to l ~-. This finite 

dimensional result follows easily from the following theorem: If x is a smooth 

point of the unit ball of a Banach space X with the E.SYM(2)-property and 

q C X* is the unique support functional, then span(q) is an L-summand in X*. 

We do not know in general which spaces are characterized by the E.SYM(2)- 

property. But if X is a G-space then we are able to prove that X is a C~-space. 

Hence we get that X has the E.SYM(3)-property if and only if X is a C,-space. 

As a corollary we obtain the known result that the range of a norm-1 projection 

in a C~-space is a C~-space. 

1. Definitions, notation and preliminary results 

NOTATION. B(x, r) denotes the closed ball with center x and radius r. The 

unit ball B(0, 1) of a Banach space X will sometimes be written as XI. We 

denote the dual space by X*,  and the bidual by X**. By the w*-topology of X** 

we mean the t r (X**,X*)- topology.  

If x E X then C(x) is the smallest facial cone containing x, and if I]x 1] = 1 then 

face(x) is the smallest face of X1 containing x. Combining this we get C(x)= 

cone(face(x/tl x II)). 
A Banach space is said to have the n.2.I.P, if every family of n pairwise 

intersecting balls has a non-empty intersection. See [4] or [8]. The space 

H3(X, (0)) is the set of all triples (x, y, z)  such that x, y, z E X and x + y + z = 0, 

and II(x, y, z)ll = IIx II + II Y II + II z II- See [4]. 

DEFINITION. Let S be a subset of a real Banach space X. A point c in X is 

said to be a center of symmetry of S if 2c - x  is in S for each x in S 

LEMMA 1.1. A bounded set S #  0 has a unique center. 
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PROOF. Suppose  S has two centers,  let us say c, and c2. Le t  x E S. Then  

2ct - x ~ S and y~ = 2c2 - (2c, - x )  = 2(c2 - c,) + x E S. By repea t ing  this argu- 

men t  we get  y, = 2 n ( c 2 -  c~)+ x E S for each  n. Now IlY- - x II = 2n I Ic2-  c~ll and  

S has to be u n b o u n d e d  if cl ~ cz. 

DEFINmON. A real Banach  space X is said to have the S Y M ( n ) - p r o p e r t y  if 

the n o n - e m p t y  intersect ion of n closed balls with equal  radii has a center .  (I t  is 

easy to see that  X has the S Y M ( n ) - p r o p e r t y  if and only if the n o n - e m p t y  

intersect ion of n balls with radii equal  to 1 and with B(0,  1) as one of the balls, 

has a center . )  

A Banach  space X is said to have  the E . S Y M ( n ) - p r o p e r t y  (the ex tended  

S Y M ( n ) - p r o p e r t y )  if the n o n - e m p t y  intersect ion of any n closed balls has a 

center .  

LEMMA 1.2. A C~-space has the E . S Y M ( n  )-property ]:or all n. 

PROOF. Le t  C ~ ( K )  be the space consisting of all cont inuous  funct ions on a 

compac t  Hausdor t t  space  K which satisfy [ ( x  ) = - f ( ~ x )  for  every  x E K, where  

tr is a h o m e o m o r p h i s m  of K on to  itself whose square  is the identity.  

Let  { B ~ , r , ) , i  = 1 , . . . , n }  be n balls such that  

n 

s = I"1 
i = l  

Let  g E C ( K )  be the funct ion def ined for  each x by 

2g (x)  = max( f l (x )  - r l , "  ", f ,  (x)  - r, ) + min(f~(x) + r l , . .  -, f .  (x)  + r,).  

Since ~ ( x ) = - ~ ( t r x )  for  each i we see that  g ( x ) = - g ( t r x )  and hence 

g E C~ (K). 
Let  h ~ES and x • K .  Then  there  is an i and a ] such that  2 g ( x ) =  

[ ~ ( x ) - r ,  + [ j ( x ) + r j .  Now 2 g ( x ) - h ( x ) - [ k ( x ) = [ , ( x ) - r ,  + [ j ( x ) + r j - h ( x )  

- fk (X) <- [, (X) -- r~ + fk (X) + rk -- h (x )  - fk ( x )  <= r, - r~ + rk = rk. In a similar way 

we get  2 g ( x ) - h ( x ) - f ~ ( x ) > = - r k .  This is t rue for  all x and all k. Thus  

2 g - h E S  a n d g  is a cen ter  of S. 

LEMMA 1.3. (a) l 3 does not have the SYM(3)-property  ; (b) l 3 does not have the 

E.SYM(2)-property .  

PROOF. (a) T h e  maximal  faces of the unit  ball of  l~ are  triangles.  H e n c e  it is 

easy to a r range  three  balls with radii  equal  to 1 such that  their  intersect ion is a 

i x _ 1 0 1). T h e n  the intersect ion triangle. Choose  for  instance x = (2, 2, 1) and y = ( 2, , 
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B(0, 1) O B(x, 1) n B(y, 1) will be the triangle with (�89189 (0,�89189 and (0,0, 1) as 

corners. A triangle does not have a center. 

(b) Let x = (1, 1, 1), then B(0, 1)n  B(x,2) is a triangle. 

LEMMA t.4. The E.SYM(n )-property (and the SYM(n )-property ) is presert~ed 
by a norm-1 projection. 

PROOF. Suppose X has the E.SYM(n)-property. Let P be a norm-1 projec- 

tion in X and let Y = P(X) be the range of P. Let Bx denote balls in X and B~ 

balls in Y. Let {Be (y~, r~)} be n balls in Y such that 
n 

S~ , =  n B~,(y, , r , )#O. 
i = l  

Let Sx = n~=lBx(y,,r~). Then S •  and P(Sx) = S~,. Let c be the center of 

Sx. Then we easily see that P(c) is the center of Sy. (In the case X has the 

SYM(n)-property choose all r~ equal to r.) 

2. G-spaces and the SYM(3)-property 

A Banach space X is called a G-space if the space can be represented as a 

subspace of some C(K)-space consisting of all the functions which satisfy a set A 

of relations of the form 
f(xa ) = A~/(ya ) 

with xa, y~ E K and I)t, I < 1 for all a E A. The real G-spaces were introduced 

by Grothendieck and they have been studied by several authors. See for instance 

[2, 3, 4, 7, 10, I2, 13, 14, 15, 16]. 

THEOREM 2.1. A real Banach space X has the SYM(3)-property if and only if 

X is a G-space. 

The proof will be given as a sequence of lemmas. 

LEMMA 2.2. A G-space has the SYM(n)-property for each n. 

PROOF. Let X be a G-space. Then X can be represented as mentioned 

above. Let {B(f,  r)} be n balls with a non-empty intersection S. The function g 

defined by 2g = m a x ( f ~ , . . . , f , ) + m i n ( f ~ , . . . , f , )  is in X by [8, lemma 6.7]. 

Obviously g is the center of S. (See the proof of Lemma 1.2.) Notice that the 

center g is independent of the radius r. 

LEMMA 2.3. If X has the SYM(3)-property then X** has the SYM(3)- 

property. 
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PROOF. Let x, y E X * *  such that S = B ( O ,  1 ) A B ( x ,  1 ) N B ( y ,  1 )~ f~ .  If S 

contains just one point then there is nothing to prove. Hence  we may assume 

that S is infinite. We shall find the center of S as the limit of a net. 

By the principle of local reflexivity we may, for each finite subset ct = 

{ z l , "  . , z , }C_S and for each finite dimensional subspace F in X*,  choose an 

opera tor  T~.r such that 

T,,.I.- :E,~--~ X, 

( 1  - 1/,,)11 z II--< II To.FZ II-<- (1 + 1/n)l[ z II, 

T~.~-z (~) = f ( z  ), 

for all f E F and all z E Eo where E ,  = span{x, y, z~,. �9 z, } and n = card a. 

Let  now S~.F be the subset of X defined by 

(2.1) S ~ . F = B ( O , I + I / n ) O B ( T ~ , , - x , I + I / n ) O B ( T ~ . r y ,  I + I / n ) .  

Let ca.,- be the center of S~.r. Since T~.FZ~ ~ S~.r- for each i we have 2c~.,.- 

T~.Fz, ES~,~-. Let u E{0, To,Fx, T~.Fy}. Then by (2.1) 

(2.2) 112co.  - T~.rz, - u 1[ <= 1 + 1/n. 

Regard now co,~- as a point in X**. Since the net {c~.~} is bounded in X** we 

may assume that the net has a limit c with respect to the w*-topoiogy of X**.  (If 

not choose a convergent  subnet.) We may also assume that {T~.~-x} and {T~.Fy} 

are w*-convergent nets in X**,  and by the way the operators  are chosen we see 

that 

(2.3) T~.rx ~ x and T,,.,.-y ~ y. 

Let z r S. Then there is a subnet of {T~.~-z} w*-converging towards z in X**. By 

(2.2) and (2.3) we get 

112c-zll_-<l, ll2c-z-xll<=l and 112c-z-yl l - - - -1 .  

Hence 2 c - z  E S  and we may conclude that c is the center of S, and 

consequently X** has the SYM(3)-property.  

LEMMA 2.4. Suppose X has the SYM(3)-property. Let x, y E X and r > 0 be 

such that S = B(O, r) O B(x,  r) n B(y,  r) has a non-empty interior. Then the 

center c of S is an interior point of S. 

PROOF. Let u E int S. Then there is an e > 0 such that B(u,2e)C_ S. Then 

2c - B (u, 2e ) = B (2c - u, 2e ) _C S and hence B (c, e ) _C S. 
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LEMMA 2.5. Suppose X has the SYM(3)-property. Let x, y E X and S be the 

intersection of balls in X** defined by S = B(0, r) n B ( x, r) n B(y,  r ). Let S be the 

intersection of balls in X defined by S = S n X. Suppose r is such that S has a 

non-empty interior. Then the center c of S is also a center of S. 

PROOF. There  is by Lemma  2.4 an e > 0 such that 

(2.4) B(c, e ) C  S. 

Let a E S and let E = span{x, y, a} in X**. By the principle of local reflexivity 

we may choose an opera tor  T..~- for each n and each finite dimensional subspace 

F in X* such that 

T =  T. ,F:E--*X,  

(1-8)llzll<=llZzll<=O + 8)llzll, 

Tz([ )  = f ( z  ), 

for each z E E  and each [ E F ,  and Tz = z for each z E X N E  where 

(2.5) 0 <  6 =< e/r(n - 1). 

Let  now u E {0, x, y} and define b = b.,v by 

b.,v = b = ( l /n)c  +(1 - l /n)Ta.  

By (2.4) and (2.5) we get Ilu-bll<=(a/n)llu-cll+(1-1/n)llu-Tal[<-_ 
(l/n)(r - e) + (1 - l /n ) (1  + 6)r =< r. Hence b = b.,F ~ S. Now we may assume 

that {b..F} is a w*-convergent net in X**,  and by the way the operators  

T..v are chosen we see that b..v--*a. Since 2 c - b . , v E S  C S we get 

2c - b.,v ~ 2c - a E S since S is w*-closed. We see that c is also a center of S, 

and the center is unique by Lemma  1.1. 

LEMMA 2.6. Suppose X has the SYM(3)-property. Let x, y E X such that 

IIx II = Ily II = 1. ~f face(x) N face(y)  = ~ then Ilx - y II > 1. 

PROOF. Suppose for contradiction that I i x - y ] ] ~  1. Let S be defined by 

S = B(0,  1) N B(x, 1) n B(y,  1) and let c be the center of S. Since 0, x, y E S we 

have 2c, 2c - x and 2c - y E S. Then 112c II--< 1,112x - 2c I[ = 1 and 112y - 2c  ll--< 1. 
Now x = � 8 9  and y = ~ ( 2 y - 2 c ) + � 8 9  Thus we get 2 c C  

face(x) n face(y  ) = ~ .  

LEMMA 2.7. If X has the SYM(3)-property then X has the 3.2.I.P. 
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PROOF. It is sufficient to prove that X* has the 3.2.I.P. (See [4, corollary 

3.3].) Suppose X* does not have the 3.2.I.P. Then there are by [4, corollary 2.11] 

points x, y, z E X** such that 

(x, y, z ) ~ O, H3(X* *, (0)), 

with all x, y, z ~ 0. We may assume [I z 11 _-< 11 y [1 ~ 11 x 11. Also [[ z 11 = 1[ x + y 1[ _-< [[ y 11 

since x + y + z = 0. We can now by using [5, lemma 1.1] find u, v, w in X** such 

that 
x = w + u, IIx II = II w II + II u II, 

- y = w + v ,  [[y[[=[[wl[§ 

C ( u )  n C ( v )  = (o). 

Use now the fact that (x, y, z ) =  ( w , -  w,0)+ ( u , -  v, z )  to write (x, y, z )  as a 

convex combination in H3(X **, (0))1. But since z ~ 0 and (x, y, z)  is an extreme 

point we get w = 0. Thus x = u and - y = v. Consequently C(x)  r C( - y) = (0) 

and 
face(x/tlx 1[) A f a c e ( -  Y/[I Y 11) = O. 

Then we get from Lemma 2.3 and Lemma 2.6 that II(x/llx I1+ y/~y II)ll > 1. Now 

by remembering II z II--< II y I1 ~ IIx II and IIx + y il = II z II we get 

It x I1 II y II < II(x II y II + y It x II)tt =< It y I1 II x + y II + l1 y I1" (11 x II - II y ii) 

= Ily I1 IIz ll+lly II(llx I I-I ly  II). 

Then we get by cancelling IIYll that Ilxll<ilzll§ and we have the 

contradiction [ly II < fl z 11 --< II y II. 

LEMMA 2.8. I f  X has the SYM(3)-property then X has the 4.2.I.P. 

PROOF. X has the 4.2.I.P. if and only if X** has the 4.2.I.P. Suppose X** 

does not have the 4.2.I.P. Then there is by [4, corollary 4.5] and Lemma 2.7 

above a norm-1 projection P in X** such that P(X**)=  l~. (We may choose 

e = 0 since we are in a dual space.) The SYM(3)-property is preserved by a 

norm-1 projection (Lemma 1.4), thus contradicting the fact that 13 does not have 

the SYM(3)-property (Lemma !.3). 

COROLLARY 2.9. I f  dim X = n < co then X has the SYM(3)-property if and 

only if X is isometric to l"~. 

PROOF. An n-dimensional space with the 4.2.I.P. is isometric to l 2. The 

corollary then follows from Lemma 2.2 and Lemma 2.8. 
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REMARK. Lima [6] has characterized finite dimensional CL-spaces and finite 

dimensional CL-spaces without the 3.2.I.P. By using these characterizations we 

could give a more direct and easier proof of Corollary 2.9. 

PROOF OF THEOREM 2.1. Lindenstrauss and Wulbert [10, theorem 2] have 

proved that X is a G-space if and only if for every x, y E X there is a u ~ X such 

that 

(2.6) u (p) = max(x (p), y (p), 0) + min(x (p), y (p), 0) 

for every p E9eX*. Let now x,y E X. Choose r > 0  such that S = 

B(0, r) n B(x, r) N B(y, r) has a non-empty interior in X, and let c be the center 

of S. We shall show that 2c is an element with the property (2.6). By Lemma 2.8 

X has the 4.2.I.P., hence X** is a C(K)-space with K a compact and extremally 

disconnected Hausdorff space [8]. Regard now x and y as points in X**. Then z 

defined by 2z=max(x,y ,O)+min(x,y ,O) is in X * * ( = C ( K ) ) .  Let S =  

B(0, r ) n  B(x, r)O B(y, r) in X**, then by Lemma 2.2 we have that z is the 

center of S. Now c is by Lemma 2.5 also a center of S and by the uniqueness of 

centers (Lemma 1.1) we have c = z. Let now p E 9,X*. Then p ~ 0~X*** and we 

have 
2c (p) = 2z (p) = max(x (p), y (p), 0) + min(x (p), y (p), 0). 

The proof is complete. 

COROLLARY 2.10. A real Banach space X is a C(K)-space if and only if X 
has the SYM(3)-property and X, contains an extreme point. 

PROOf. If the unit ball of a G-space has an extreme point then it is a 

C(K)-space [8]. 

COROLLARY 2.11 ([10, theorem 3]). The range of a norm-1 projection in a 

G-space is a G-space. 

PROOF. It follows from Lemma 1.4 and Theorem 2.1. 

3. The E.SYM(2)-property 

We have not been able to find out which spaces are characterized by the 

E.SYM(2)-property. If dim X < ~, then we prove in Theorem 3.6 that they are 

the /i-spaces. In the general case, we only have some partial results. 

THEOREM 3.1. Suppose X has the E.SYM(2)-property. If x is a smooth point of 

X1 and q E X* is the support functional, then span(q) is an L-summand in X*. 

We need some lemmas to prove the theorem. 
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LEMMA 3.2. If X has the E.SYM(2)-property, then X** has the E.SYM(2)- 

property. 

P~OOF. The proof is similar to the proof of Lemma 2.3. 

Let q be any point in X* with Ilq I1 = I. Let D(q) be the face of X~'* defined by 

D(q) = {f C X** :[If[[ = 1 = f(q)}. 

Let H(q) be the cone in X** defined by 

H ( q ) =  U{B(nf, n): n E Nand f C V(q )}. 

By the convexity of D(q) it follows that H(q) is convex. 

LEMMA 3.3. If X** has the E.SYM(2)-property, then H(q) is w*-closed. 

PROOF. Let B(0, 1)= X**. We first prove that 

(3.1) H(q)n B(0, 1) = B(0, 1)n (U{B(f,  1 ) : f  ~ D(q)}). 

Let g E H ( q ) N  B(0, 1). Then there is f E  D(q) and n such that g EB(0 ,  1)N 

B(n[, n) = S. Let h be the center of S. Since 0, f, g E S we have 2h, 2h - f  and 

2 h - g E S .  Thus ][2h ][_-< l, ] [2h-g] l=<l  and []l/n((n+l)/-Zh)I[= <1.  Now 

f = n/(n + 1)(1/n((n + 1 ) / - 2 h ) ) +  1/(n + 1)2h. So 2h E D(q) since D(q) is a 

face, and g E B(0, 1) n B(2h, 1). Hence we have got the inclusion " C  " in (3.1). 

The converse inclusion is obvious. 

Let now {g,} be a w*-convergent net in H(q)N B(0, 1) such that g, ~ go. For 

each a there is by (3.1) an f. E D (q) such that I1[. - g. II -<- 1. Let {f~ } be a 

w*-convergent subnet of {f~} and let foe D(q) be the limit. Then lifo-g,,ll-<-1, 
and go E B(0, 1) n B(fo, 1) C B(0, 1) N H(q). Thus B(0, 1) n H(q) is w*-closed 
and by Banach-Dieudonn6 H(q) is w*-closed. The proof of Lemma 3.3 is 

complete. 

Let F C X* be defined by 

F = {p E X* :tiP [[ = 1 and f(p) = 1 for all f E D(q)}. 

LEMMA 3.4. Suppose X** has the E.SYM(2)-property. Then H ( q ) =  

{f E X** :f(p)_->0 for all p E F}. 

PROOF. The inclusion "C_" follows directly from the definitions of H(q) and 

F. Suppose gff: H(q). Since H(q) is by Lemma 3.3 a w*-closed convex cone 

there is poEX*, ttpol]=l such that g(po)<inf{f(po):fEH(q)}=O. Let 

f E D (q) and let h be such that h (po) = 1 = II h II. Then f - h E B ~, 1) C H(q). 
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Hence f(po)-h(po)>=O, and l=h(po)<-_f(po)<-_llp,,ll=l. Thus poE F and 
g(p0)<0. The inclusion " D "  is proved. 

LEMMA 3.5. There is an foE D(q) such that B(O, 1)N H(q)= 
B(O, 1) n B{f0, 1). 

PROOF. We give D(q) the following ordering: 

f <g i f andon ly i f  B(O, 1)AB(f,  1)C_B(O, 1)NB(g, 1). 

Suppose f, g E D(q) and B(0, 1) N B(f, 1) = B(0, 1) n B(g, 1) = S~. Then both 

f/2 and g/2 are centers of S~ and by the uniqueness of centers, f = g. Thus the 

ordering is partial. 
Let {f~} be a chain in D(q) and let f be a w*-accumulation point in D(q). Let 

a be given and let g E B (0, 1) n B (fa, 1). If a _<-/3, then f~ < f~ and 1[ g - f~ II =< 1. 

Hence IIf - g II--< 1 and g E B(0, 1) n B(f, 1). Thus f~ < f and f is an upper bound 

of {f~} in D(q). 
By Zorn's Lemma, D(q) has a maximal element fo. 

Let g E D(q). Then B(0, 1) N (B(fo, 1) U B(g, I)) _C B(0, 1) n B(fo+ g,2) = $2. 

Let h be the center of $2. Now $2 C_ H(q) since B (fo + g, 2) = B (2(~(f0 + g)), 2). 

By Lemma 3.4, f(q)>=O for all f E $2. We have 2h E $2 since 0 E  $2. Hence 

ll2h II---- 1 and 2h(q)-<_ 1. Since fo E $2 we have 2h - fo E $2 and 2h(q) >= fo(q) = 1. 
Thus 112hll = 1 = 2h(q) and 2h ~D(q) .  

We also have $2 C B(0, 1) O B(2h, 1). Thus fo < 2h. By the maximality of fo 

and since the ordering is partial we have fo = 2h. Hence B(0, 1 )n  B(g, 1 ) c  

B(0, 1) n B(f,,, 1). Now by (3.1), H(q) n B(0, 1) = B(0, 1) n B(fo, 1). 

PROO~ Or THEOREM 3.1. Let x be a smooth point of X~ and let q E X* be the 

unique support functional. If we regard x as a point in X** we have x E D(q) 
and F={q} .  Hence H ( q ) = { f E X  ** :f(q)_-----0} by Lemma 3.4. 

Let J = {f E X * *  : f ( q ) = 0 }  and let E = J n B(0, 1). Now we find by using 

Lemma 3.5 that E = - f o +  D(q), and also B(0, 1) = {g + tfo: g E E and It I_- < 1}. 
Then we easily get Itg + tfoll = max{]I g II, It I}. Hence X** = J @~ span(fo). Thus J 
is an M-summand in X** and so span(q) is an L-summand in X*. 

THEOREM 3.6. If dim X = n < oc then X has the E.SYM(2)-property if and 

only if X is isometric to l~. 

PROOF. The if-part follows from Lemma 1.2. We prove the only if-part by 

induction. The theorem is obviously true for n = 1. Suppose it is true for n - 1. 

Let x be a smooth point of X~ [11]. Let q be the unique support functional and 

Y =q-1(0). By Theorem 3.1, Y is an M-summand in X since span(q) is an 
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L-summand  in X*.  An M-project ion has norm 1 and hence, by Lemma  1.4, Y 

has the E.SYM(2)-property. Thus Y is isometric to l"~-' by the induction 

hypothesis. Since Y is an M-summand  in X we have X isometric to l"~. 

LEMMA 3.7. Let X be a G-space. If X has the E.SYM(2)-property then X is a 
C~-space. 

PROOF. Let p E w*-closure (O,X' O. Then by [4, theorem 7.10] there are 

a E [ -  1,1] and y E a,X'~ such that p = ay  and we have 

(3.2) g(p) = a g ( y )  for all g E X. 

Since a G-space  is an L~-predual we have that span(y) is an L - summand  in X*.  

Hence there is an [ @ X  such that II/l[=l=s Let h be the center of 

S = B(f ,2  - or) n B(  - / , 2 ) .  A proof similar to the one we used to prove Lemma 

2.3 will give that X** has the E.SYM(2)-property.  Let S = 

B ( f , 2 - o ~ ) A  B ( - f , 2 )  in X**. Then S has a center and by using arguments 

similar to those used to prove Lemma 2.5 we find that h is also a center of S. By 

the proof of Lemma 1.2 and by the uniqueness of centers (Lemma 1.1) we see 

that h must be the function in X** = C(T) defined by 

2h = m a x ( f -  2 + a, - f - 2 ) + m i n ( f + 2 - a ,  - / + 2 ) .  

Now w*-closure (aeX*~)C_ T and hence 

2h (y) = max( - 1 + a, - 3) + min(3 - a, 1) = ( - 1 + a ) + 1 = a, 

2h(p)  = m a x ( -  2 + 2a, - a  - 2 ) +  m i n ( 2 , 2 - o r ) =  la I. 

But h E X, hence by (3.2), 2h(p)  = a 2 h ( y )  and lal = a 2. Thus a = - 1,0 or 1. 

This gives that w*-closure(a ,X*)C a,X• u {0}, and by [3, theorem 13] X is a 

C~-space. 

REMARK. It is possible to prove more than Lemma 3.7. Let X be an 

L,-predual with the E.SYM(2)-property. Then by using a proof similar to the 

one above it is possible to prove that if p E w*-closure(a,X~') then p = 0 or 

lip II = 1. Hence Lemma  3.7 will follow as a corollary. 

THEOREM 3.8. A real Banach space X is a C~-space if and only if X has the 
E.S YM ( 3 )-property. 

PROOF. Use Lemma 1.2, Theorem 2.1 and Lemma  3.7. 

COROLLARY 3.9 [10, theorem 3]. The range of a norm-1 projection in a 
C~-space is a C,-space. 

PROOF. Lemma  1.4 and Theorem 3.8. 
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